A Multiscale Mortar Mixed Space Based on Homogenization for Heterogeneous Elliptic Problems

نویسندگان

  • Todd Arbogast
  • Hailong Xiao
چکیده

We consider a second order elliptic problem with a heterogeneous coefficient written in mixed form. The nonoverlapping mortar domain decomposition method is efficient in parallel if the mortar interface coupling space has a restricted number of degrees of freedom. In the heterogeneous case, we define a new multiscale mortar space that incorporates purely local information from homogenization theory to better approximate the solution along the interfaces with just a few degrees of freedom. In the case of a locally periodic heterogeneous coefficient of period ε, we prove that the new method achieves both optimal order error estimates in the discretization parameters and good approximation when ε is small. Moreover, we present three numerical examples to assess its performance when the coefficient is not obviously locally periodic. We show that the new mortar method works well, and better than polynomial mortar spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale mortar mixed methods for heterogeneous elliptic problems

Consider solving a second order elliptic problem when the elliptic coefficient is highly heterogeneous. Generally, a numerical method either uses a very fine computational mesh to resolve the heterogeneities and therefore becomes computationally inefficient, or it performs efficiently on a coarse mesh but gives inaccurate results. Standard nonoverlapping domain decomposition using mortar spaces...

متن کامل

A Multiscale HDG Method for Second Order Elliptic Equations. Part I. Polynomial and Homogenization-Based Multiscale Spaces

We introduce a finite element method for numerical upscaling of second order elliptic equations with highly heterogeneous coefficients. The method is based on a mixed formulation of the problem and the concepts of the domain decomposition and the hybrid discontinuous Galerkin methods. The method utilizes three different scales: (1) the scale of the partition of the domain of the problem, (2) th...

متن کامل

Mixed Multiscale Methods for Heterogeneous Elliptic Problems

We consider a second order elliptic problem written in mixed form, i.e., as a system of two first order equations. Such problems arise in many contexts, including flow in porous media. The coefficient in the elliptic problem (the permeability of the porous medium) is assumed to be spatially heterogeneous. The emphasis here is on accurate approximation of the solution with respect to the scale o...

متن کامل

A Multiscale Mortar Multipoint Flux Mixed Finite Element Method

In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces....

متن کامل

A FEM Multiscale Homogenization Procedure using Nanoindentation for High Performance Concrete

This paper aims to develop a numerical multiscale homogenization method for prediction of elasto-viscoplastic properties of a high performance concrete (HPC). The homogenization procedure is separated into two-levels according to the microstructure of the HPC: the mortar or matrix level and the concrete level. The elasto-viscoplastic behavior of individual microstructural phases of the matrix a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2013